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Expression of Bovine §-Casein in Saccharomyces cerevisiae and
Characterization of the Protein Produced in Vivo

Rafael Jimenez-Flores,! Thomas Richardson,”' and Linda F. Bisson!

Department of Food Science and Technology and Department of Viticulture and Enology, University of
California, Davis, California 95616

Recombinant DNA technology offers numerous opportunities for engineering food proteins and for
studying their structure-function relationship. As part of the study of the structure—function of bovine
caseins, it is necessary to produce mutant proteins in experimental amounts and correlate their new
structure to their physicochemical characteristics. To this end, bovine §-casein was expressed in the
yeast Saccharomyces cerevisiae by a fusion to the HXKI (hexokinase P1) gene. Casein was pro-
duced during late exponential/early stationary phase of growth on glucose as would be predicted for
a gene under the control of the HXKI promoter. Bovine 8-casein was posttranslationally modified
by yeast. Internal phosphorylated forms were observed as well as a high molecular weight form that
appeared to be O-glycosylated and largely localized to the periplasmic space.

Bovine caseins serve as important sources of nutrition
in the human diet, and the proteins themselves are used
as food additives to enhance the nutritional value and
functional characteristics of a variety of products. Pro-
teolytic digestion coupled with decreased solubility of the
caseins at low pH is central to the production of cheese
and other dairy products. Because of their availability
and precipitation at low pH, bovine caseins are used as
clarification agents in wine processing. One approach to
further elucidate the structural features of caseins impor-
tant for proper function in micelle formation and func-
tionality in foods is to alter the protein sequence by alter-
ing the DNA sequence encoding the protein and to obtain
sufficient quantities of the protein for analysis. All of
the bovine caseins have been cloned (Bonsing and Mack-
inlay, 1987), and some have been expressed in Escheri-
chia coli (Kang and Richardson, 1988). Bovine §-casein
is modified posttranslationally with the addition of five
phosphate groups to the protein. Such modification does
not occur in E. coli. Therefore, we sought to obtain expres-
sion of (-casein in the eukaryotic microorganism Sac-
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charomyces cerevisiae. Numerous heterologous pro-
teins have been expressed in Saccharomyces species (Brake
et al., 1984; Hitzeman et al., 1982; Kingsman et al., 1985).
Since glycolytic enzymes are normally produced in large
quantities in yeast cells (any given enzyme may repre-
sent from 1 to 5% of total cellular protein), glycolytic
promoters have been exploited in constructs to obtain
high yields of foreign proteins. However, the glycolytic
enzymes are generally produced constitutively during
growth, and such a strategy for expression of a heterol-
ogous protein may affect growth efficiency, thereby select-
ing for variants in the population producing less of the
protein product. The hexokinase P1 enzyme encoded by
the HXK]1 gene catalyzes the phosphorylation of fruc-
tose and glucose at the 6-position. However, the synthe-
sis of hexokinase P1 is glucose repressible, and this isozyme
becomes the predominant species only in the absence of
glucose or following glucose exhaustion in the medium
(Gancedo et al., 1977; Kopperschlager and Hofmann, 1969;
Muratsubaki and Katsume, 1979). Thus, the hexoki-
nase P1 gene is a glycolytic gene regulatable by the glu-
cose concentration in the medium. We decided to inves-
tigate the utility of the HXK1 promoter for expression
of a heterologous protein, bovine 3-casein, in yeast. In
addition, we undertook a preliminary characterization of
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higher molecular weight form of 36K. Significantly less
degradation of these polypeptides was observed in crude
extracts. Again, the 29K form was only released from
cells upon breakage of the cells. Preliminary studies sug-
gest that at least some fraction, if not all, of the 36K
form is associated with the yeast cell surface, being selec-
tively extracted by spheroplast production procedures and
by extended urea washing of intact cells. These obser-
vations imply a periplasmic location for the gene prod-
uct, which awaits confirmation by in vivo immunolocal-
ization. This would suggest that the bovine signal sequence
may function in yeast for export to the periplasm.

Bovine $-casein is processed during secretion in the
cow such that the mature protein contains five phos-
phate groups. The location of the five phosphate moi-
eties to a run of serines at the mature N-terminal region
has been well documented; however, this protein con-
tains several other potential phosphorylation sites (Eigel
et al., 1984). Proper folding prior to phosphorylation is
believed to play a role in selection of serine residues by
bovine casein kinase (Bingham et al., 1988; Holt and Saw-
yer, 1988). Yeast crude extracts possess kinases capable
of phosphorylation of bovine §-casein in vitro (Meggio
et al., 1986). Therefore, the casein produced in vivo was
examined for the presence of organic phosphate. In order
to address this question, 8-casein was purified from crude
extracts. Purification was complicated by the facts that
the 29K casein seemed to be comprised of a group of
heterogeneous proteins and that casein seemed to form
stable associations or aggregates with other proteins dur-
ing fractionation procedures. We suspected that heter-
ogeneity upon ion exchange may be due to heterogene-
ity in the number of phosphate groups associated with
the protein. We examined the protein form requiring
the highest salt concentration for elution from DE-52.
Treatment of this protein with calf intestine alkaline phos-
phatase and examination of protein products on urea
PAGE gels revealed that this protein contained multiple
phosphate moieties. Both yeast 8-casein and the native
bovine casein displayed the same mobilities in urea gels
before dephosphorylation and changed in the same way
following treatment. Additionally, in the lane correspond-
ing to the yeast-produced protein, several bands are appar-
ent, which indicates partial dephosphorylation (observed
occasionally in bovine B8-casein). The exact location of
the phosphate residues on the protein is not known; how-
ever, the analysis and characterization of casein kinase
II from yeast (Hathaway and Traugh, 1982; Kuenzel et
al., 1987; Chen-Wu et al., 1988; Meggio et al., 1986; Pad-
manabha and Glover, 1987) seem to indicate that it may
be very similar to the kind of phosphorylation found in
bovine caseins (Bingham et al., 1988). Casein kinase II
is structurally a very similar enzyme in many different
species (i.e., yeast, fly, and rat). Its function is also con-
served in many species: it phosphorylates Ser and Thr
residues in protein substrates, where a cluster of acidic
residues immediately C-terminal to the modified amino
acid appears to be important for recognition. There-
fore, 3-casein produced in yeast seems to be phosphory-
lated in vivo.

The nature of the 36K form of casein was also inves-
tigated. We could not account for the increase in molec-
ular weight (7K) from failure to process the 17 amino
acid leader or from read through into the terminator
regions of the HXK] construct. The §-casein transla-
tional terminator was unaltered in the construction. Other
possible protein modifications accounting for dramatic
increases in molecular weight include glycosylation. The
B-casein construct does not include a single N-glycosyla-
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tion consensus site (Asn-X-Ser/Thr) so it is unlikely that
this protein is N-glycosylated. However, O-glycosyla-
tion is not precluded. Several lines of evidence suggest
that the 36K protein is indeed glycosylated. First, there
is a dramatic increase in solubility of the 36K protein as
compared to the 29K form, and chemical glycosylation
is known to increase solubility of the commonly insolu-
ble caseins (Courthaudon et al., 1989). Second, the 36K
protein during purification seemed to fractionate and copu-
rify in a manner similar to that of other glycosylated pro-
teins in the yeast extract. This form was more resistant
to proteolysis, as might be examined by the presence of
bulky carbohydrate groups. The 36K form, when par-
tially purified, seemed to react with the lectin concanava-
lin A, suggesting glycosylation, and finally, mild alkaline
hydrolysis yielded a 29K protein from the 36K form, again
consistent with § elimination of O-glycosylated carbohy-
drate. Final confirmation of glycosylation will require
purification of the 36K protein to homogeneity, which is
in progress. It is interesting to note that we only observed
the 36K form in a strain greatly overproducing 8-casein
and that this form seemed to be located in the periplas-
mic space. Overproduction of proteins in yeast gener-
ally leads to secretion, since secretion is the default path-
way rather than transport to the vacuole [reviewed in
Pfeffer and Rothman (1987)]. This may explain, at least
partially, the observed localization of the protein. Many
secreted proteins are glycosylated, and O-glycosylation
has not been thoroughly studied in yeast (Kukuruzinska
et al., 1987). If the 36K protein is indeed O-glycosy-
lated, this may represent an opportunity for the further
analysis of O-glycosylation in Saccharomyces.

In summary, the HXK1 regulatory sequences were suc-
cessfully exploited in the construction of an expression
vector for bovine 8-casein in S. cerevisize. The pattern
of expression was consistent with the known regulatory
mechanisms for HXK] expression. The protein pro-
duced in yeast seems to be present in heterogeneous forms,
differing in extent of phosphorylation, apparent cellular
localization, and glycosylation. Further studies are under
way to elucidate the nature of the protein modifications
during in vivo expression of 3-casein.
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